Find the equation of the tangent to the curve $y = \frac{5x+4}{3x-8}$ at the point , (2, -7).

b. real roots. Write down the set of possible values of k.

0 $y = \frac{2x+4}{x^2+5}$ The diagram shows the curve

v

- Find $\frac{dy}{dx}$ and hence find the coordinates of the two stationary points. i.
- ii. The function g is defined for all real values of x by

Sketch the curve y = g(x) and state the range of g. a.

It is given that the equation g(x) = k, where k is a constant, has exactly two distinct

2.

© OCR 2017.

 $g(x) = \left| \frac{2x+4}{x^2+5} \right|$

[3]

[6]

x

[2]

[5]

Tangents, Normals, Stationary Points and Increasing and Decreasing Functions 3. A curve has equation $x = (y + 5) \ln(2y - 7)$.

- (c) Find the coordinates of the turning point on the curve.
- (d) Determine whether this turning point is a maximum or a minimum. [5]
- ^{6.} In this question you must show detailed reasoning.

A curve has equation $y = \frac{2x}{3x-1} + \sqrt{5x+1}$. Show that the equation of the tangent to the curve at the point where x = 3 is 19x - 32y + 95 = 0. [7]

END OF QUESTION paper

4.

5.

[4]

Mark scheme

Qu	estior	Answer/Indicative content	Marks	Part marks and guidance	
1	i	Attempt use of quotient rule or equiv	M1	condone one slip only but must be subtraction in numerator; condone absence of necessary brackets; or equiv	
	i Obtain $\frac{2(x^2+5)-2x(2x+4)}{(x^2+5)^2}$		A1	or correct equiv; now with brackets as necessary	correct numerator but error in denominator: max M1A0A1M1A1A1; numerator wrong way round:
	i	Obtain $-2x^2 - 8x + 10 = 0$	A1	or equiv involving three terms	max M0A0A0M1A1A1
	i	Attempt solution of three-term quadratic equation based on numerator of derivative (even if their equation has no real roots)	M1	implied by no working but 2 correct values obtained	M1 for factorisation awarded if attempt is such that x ² term and one other term correct upon expansion; if formula used, M1 awarded as per Qn 2
	i	Obtain –5 and 1	A1		
	i	Obtain $(-5, -\frac{1}{5})_{and (1, 1)}$	A1	Allow $-\frac{6}{30}$	
	i	Sketch (more or less) correct curve	B1	showing negative part reflected in <i>x</i> -axis and positive part unchanged; ignore intercept values on axes, right or wrong	
	i	State values between 0 and their y-value of maximum point lying in first quadrant	M1	accept ≤ or < signs here	
	ii State correct 0≤ <i>y</i> ≤1		A1ft	following their y -value of maximum point in first quadrant; now with \leq signs; or equiv perhaps involving g or g(<i>x</i>)	for " $y \ge 0$ and $y \le 1$ ", award M1A1; for separate statements $y \ge 0$, $y \le 1$, award M1A0

	ii	Indicate, in some way, values between y-coordinates of maximum point and reflected minimum point (provided their y-coordinate of minimum point is negative)	M1	Tangents, Normals, Stationary Points and Increasing an allow ≤ sign(s) here; could be clear indication on graph	nd Decreasing Functions for " $k > \frac{1}{5}$ and $k < 1$ " " and, award M1A1; for separate statements, award M1A0
				or correct equiv; not ≤ now; correct answer only earns M1A1 Examiner's Comments	
	ii	State $\frac{1}{5} < k < 1$	A1	Part (i) of this question involved a routine process and most candidates proceeded accordingly using the quotient rule. There were some errors including omitting the square in the denominator and getting the two parts of the numerator the wrong way round. Lack of precision with algebra led to further errors among which the commonest was the simplification of $2(x^2 + 5) - 2x(2x + 4)$ to give $2x^2 + 10 - 4x^2 + 8x$. This particular mistake led to both stationary points having positive <i>y</i> -coordinates. Candidates making this elementary algebraic mistake seemed totally unconcerned by the fact that the coordinates of their stationary points did not match the evidence of the curve shown in the question. The requests in part (ii) were much more challenging and many candidates lacked the necessary skill and insight to answer them successfully. Most drew an acceptable curve of $y = g(x)$ although not all gave sufficient attention to detail, particularly at either end of the <i>x</i> -axis. Perhaps mindful of the fact that modulus was involved, many candidates opted for $g(x) \ge 0$ for the range of g; they did not seem to use the evidence provided by their graph. Only 33% of candidates earned three marks forpart (ii)(a). Fewer candidates succeeded with the final part; those that did were usually able to write down the correct answer by consideration of their graph from the previous part. But most candidates were unable to make a sensible attempt or the request for two distinct real roots sent them into a $b^2 - 4ac > 0$ routine.	
		Total	11		
2		Attempt use of quotient rule or, after adjustment, product rule	*M1	For M1 allow one slip in numerator but must be minus sign in numerator and square of $3x - 8$ in denominator; allow M1 for numerator the wrong way round	For product rule attempt, *M1 for $k_1(3x - 8)^{-1} + k_2(5x + 4)(3x - 8)^{-2}$ form and A1 for correct constants 5 and -3;

	$\frac{\frac{5(3x-8)-3(5x+4)}{(3x-8)^2}}{(3x-8)^2}$		A1	Tangents, Normals, Stationary Points and Increasing and Decreasing Functions Allow if missing brackets implied by subsequent simplification or calculation
		equiv		
		Substitute 2 to obtain –13 or equiv	A1	
		Attempt to find equation of tangent	M1	Dep *M; equation of tangent not normal
				Or similarly simplified equiv with 3 non-zero terms
				Examiner's Comments
		Obtain $y = -13x + 19$ or $13x + y - 19 = 0$	A1	This opening question was answered very well in general with 74% of the candidates recording full marks. The majority applied the quotient rule accurately although lack of care with brackets in the numerator did lead to some sign errors. Some candidates opted for use of the product rule and this was not handled quite so convincingly. There were some cases where candidates stopped as soon as they had found the gradient but, in general, candidates proceeded without difficulty to produce the equation of the tangent and to present it in an acceptable form.
		Total	5	
3	а	Attempt use of product rule Obtain ln (2 y – 7)	M1(AO1.1a) A1(AO1.1)	Award for sight of two terms
		Obtain $+\frac{2(y+5)}{2y-7}$	A1(AO1.1) [3]	
	b	$(y + 5)\ln (2y - 7) = 0$ y = -5 or $y = 4$	M1(AO1.1) M1(AO3.1a)	Substitute $x = 0$ and attempt to solve $\frac{dy}{dx}$ May attempt to form $\frac{dy}{dx}$ by attempting to form

		Substitute $y = 4$ into $\frac{\mathrm{d}x}{\mathrm{d}y} (=\ln 1 + 18)$	A1(AO1.1)	Tangents, Norr the reciprocal. Allow any attempt howev	nals, Stationary Points and Increasing and Decreasing Functions
	$\frac{\mathrm{d}y}{\mathrm{Obtain}} = \frac{1}{18}$		M1(AO2.1)	Do not allow In -17	
			A1(AO2.3)	May state that the In graph negative values or at (0, -	
		Substitute $y = -5$ into dy or x)	[5]	Theyative values of at (0, -	
		and indicate that In (-17) does not exist			
		Total	8		
		$\frac{V = x(21 - 2x)^2}{= 4x^3 - 84x^2 + 441x}$	B1(AO3.3)	Cata agreed averaging	oe
		$V' = 12x^2 - 168x + 441$	M1(AO1.1a)	Sate correct expression for volume	Or use product rule
		$12x^2 - 168x + 441 = 0$	M1(AO3.1b)	Expand and attempt differentiation	
4	а	<i>x</i> = 3.5 cm	A1ft(AO3.2a)	Equate to 0 and attempt to solve	BC
			M1(AO1.1)	Obtain $x = 3.5$ cm only, ft on their V Use	A0 if 10.5 also given
		when $x = 3.5$, $V'' = 24 \times 3.5 - 60 < 0$	A1ft(AO2.1)	second derivative oe	
			[6]	Conclude maximum	If evaluated, must be correct
		hence maximum			

	$\Rightarrow AB$ is / to x-axis AG	[2]	Tangents, Normals, S Show that $\frac{\ln 4}{4} = \frac{2 \ln 2}{4}$ and conclusion	Stationary Points and Increasing and Double Use of $\frac{\ln 4}{4} - \frac{\ln 2}{2} = 0$ unjustified B0B0	ecreasing Functions
			Examiner's Comments Many candidates just stated of $\frac{\ln 2}{2} - \frac{\ln 4}{4} = 0$, either without using their calculator and decir candidates scored no marks, the "detailed reasoning" instru-	proof, or by mals. These because of	
С	$\frac{\frac{dy}{dx} = \frac{x \times \frac{1}{x} - 1 \times \ln x}{x^2} \text{ or } \frac{1}{x} \times \frac{1}{x} + \ln x \times (-\frac{1}{x^2}) \text{ oe}}{\frac{1}{x^2} - \frac{\ln x}{x^2} = 0} \text{ or } \frac{1 - \ln x}{x^2} = 0$ $1 - \ln x = 0 \text{ oe}$ $x = \text{ or } 2.72 \text{ or } 2.7 \text{ (2 sf)}$ Coordinates are (e, $\frac{1}{e}$)	M1 (AO 3.1a) M1 (AO 1.1) A1 (AO 1.1) A1 (AO 1.1) [4]	Attempt diff, \geq one term correct $\frac{dy}{dx} = 0$ oe, their $\frac{dy}{dx} = 0$ Allow (e, 0.368) or (e, 0.37)orExaminer's CommentsThis question was well answered. A few candida	(2.7, 0.37) (2 sf) tes did not find the y-coordinate.	
			Some made mistakes in the differentiation.		

			differentiation. Tangents, Normals, Stationary Points and Increasing a errors when substituting $x = e$ into $\frac{d^2y}{dx^2}$ Some considered the gradient on either side of the turning point, generally correctly. In both this part and part (c), candidates who used "e" throughout, rather		nd Decreasing Functions	
			than its approximate decir produced neater and more	mal value,		
	Total	13				
6	DR $\frac{2(3x-1)-6x}{(3x-1)^2}$ $\frac{5}{2}(5x+1)^{-\frac{1}{2}}$ $\frac{dy}{dx} = \frac{-2}{(3x-1)^2} + \frac{5}{2}(5x+1)^{-\frac{1}{2}}$	M1 (AO 1.1) M1 (AO 1.1) A1 (AO 2.1)	Attempt to differentiate first term using quotient rule or equiv Attempt to differentiate second term Fully correct derivative	Obtain $k(5x +$ Allow unsimpli		
	$dx (3x-1)^2 2^{-2} x = 1$ $dx = 3, \frac{dy}{dx} = -\frac{2}{64} + \frac{5}{8} = \frac{19}{32}$	M1 (AO 1.1a) B1 (AO 1.1)	Attempt gradient at <i>x</i> = 3			

$y = \frac{19}{4}$	M1 (AO 2.1)	Tangents, Nor Correct y-coordinate	hals, Stationary Points and Increasing a	nd Decreasing Functions
$y - \frac{19}{4} = \frac{19}{32}(x - 3)$	A1 (AO 2.1) [7]	Attempt equation of line with their y- coordinate and gradient		
32y - 152 = 19x - 57		Rearrange to given form		
19x - 32y + 95 = 0 AG			At least one line of working seen	
Total	7			